Lightweight cotton diseases real-time detection model for resource-constrained devices in natural environments

From:      author:      Count: 次      Date: 2024/09/253

Cotton, a vital textile raw material, is intricately linked to people's livelihoods. Throughout the cotton cultivation process, various diseases threaten cotton crops, significantly impacting both cotton quality and yield. Deep learning has emerged as a crucial tool for detecting these diseases. However, deep learning models with high accuracy often come with redundant parameters, making them challenging to deploy on resource-constrained devices. Existing detection models struggle to strike the right balance between accuracy and speed, limiting their utility in this context. This study introduces the CDDLite-YOLO model, an innovation based on the YOLOv8 model, designed for detecting cotton diseases in natural field conditions. The C2f-Faster module replaces the Bottleneck structure in the C2f module within the backbone network, using partial convolution. The neck network adopts Slim-neck structure by replacing the C2f module with the GSConv and VoVGSCSP modules, based on GSConv. In the head, we introduce the MPDIoU loss function, addressing limitations in existing loss functions. Additionally, we designed the PCDetect detection head, integrating the PCD module and replacing some CBS modules with PCDetect. Our experimental results demonstrate the effectiveness of the CDDLite-YOLO model, achieving a remarkable mean average precision (mAP) of 90.6%. With a mere 1.8M parameters, 3.6G FLOPS, and a rapid detection speed of 222.22 FPS, it outperforms other models, showcasing its superiority. It successfully strikes a harmonious balance between detection speed, accuracy, and model size, positioning it as a promising candidate for deployment on an embedded GPU chip without sacrificing performance. Our model serves as a pivotal technical advancement, facilitating timely cotton disease detection and providing valuable insights for the design of detection models for agricultural inspection robots and other resource-constrained agricultural devices.


This work was supported by the National Key Research and Development Program of China (No.2022YFF0711805, 2021YFF0704204, 2022YFF0711801), and the Project of Sanya Yazhou Bay Science and Technology City (No.SCKJ-JYRC-2023-45), and the Innovation Project of the Chinese Academy of Agricultural Sciences (No.CAAS-ASTIP-2024-AII, No.CAAS-ASTIP-2023-AII), and The Special Fund of Chinese Central Government for Basic Scientific Research Operations in Commonweal Research Institutes (No.JBYW-AII-2024-05, No.JBYW-AII-2023-06, No.Y2022XK24, No.Y2022QC17, No.JBYW-AII-2022-14), and Nanfan special project, CAAS Grant Nos. YBXM2409, YBXM2410, YBXM2312, ZDXM2311, YBXM2312, YDLH01, YDLH07, YBXM10 and National Natural Science Foundation of China (No.31971792, No.32160421).